Cómo calcular el rango intercuartílico (IQR) en Excel

Puedes opinar sobre este contenido:
  • 0
  • 0
  • 0
  • 0

Este tutorial explica cómo calcular el rango intercuartil de un conjunto de datos en Excel.

¿Qué es el rango intercuartil?

El rango intercuartílico , a menudo denominado IQR, es una forma de medir la dispersión del 50% medio de un conjunto de datos. Se calcula como la diferencia entre el primer cuartil * (Q1) y el tercer cuartil (Q3) de un conjunto de datos.

* Los cuartiles son simplemente valores que dividen un conjunto de datos en cuatro partes iguales.

Por ejemplo, supongamos que tenemos el siguiente conjunto de datos:

[58, 66, 71, 73, 74, 77, 78, 82, 84, 85, 88, 88, 88, 90, 90, 92, 92, 94, 96, 98]

El tercer cuartil resulta ser 91 y el primer cuartil es 75,5 . Por lo tanto, el rango intercuartílico (IQR) para este conjunto de datos es 91 – 75,5 = 15 . Esto nos dice qué tan disperso está el 50% medio de los valores en este conjunto de datos.

Cómo calcular el rango intercuartil en Excel

Microsoft Excel no tiene una función incorporada para calcular el IQR de un conjunto de datos, pero podemos encontrarlo fácilmente usando la función CUARTIL () , que toma los siguientes argumentos:

CUARTIL (matriz, cuarto)

  • matriz: la matriz de datos que le interesa.
  • cuarto: el cuartil que le gustaría calcular.

Ejemplo: encontrar IQR en Excel

Supongamos que nos gustaría encontrar el IQR para el siguiente conjunto de datos:

Para encontrar el IQR, podemos realizar los siguientes pasos:

Paso 1: Encuentra Q1 .

Para encontrar el primer cuartil, simplemente escribimos = CUARTIL (A2: A17, 1) en cualquier celda que elijamos:

Encontrar el IQR en Excel

Paso 2: Encuentra Q3 .

Para encontrar el tercer cuartil, escribimos = CUARTIL (A2: A17, 3) en cualquier celda que elijamos:

Encontrar el tercer cuartil de un conjunto de datos en Excel

Paso 3: Encuentra IQR .

Para encontrar el rango intercuartílico (IQR), simplemente restamos Q1 de Q3:

IQR en Excel

El IQR resulta ser 39,5 – 23,5 = 16 . Esto nos dice qué tan disperso está el 50% medio de los valores en este conjunto de datos en particular.

Cálculo de IQR en Excel

Un enfoque más corto

Tenga en cuenta que también podríamos haber encontrado el rango intercuartílico del conjunto de datos en el ejemplo anterior usando una fórmula:

= CUARTIL (A2: A17, 3) – CUARTIL (A2: A17, 1)

Esto también daría como resultado el valor 16 .

Conclusión

El rango intercuartílico solo representa una forma de medir la «extensión» de un conjunto de datos. Algunas otras formas de medir la dispersión son el rango, la desviación estándar y la varianza .

Lo bueno de usar el IQR para medir la propagación es que es resistente a valores atípicos . Dado que solo nos dice la extensión del 50% medio del conjunto de datos, no se ve afectado por valores atípicos inusualmente pequeños o inusualmente grandes.

Esto hace que sea una forma preferible de medir la dispersión en comparación con una métrica como el rango, que simplemente nos dice la diferencia entre los valores más grandes y más pequeños en un conjunto de datos.

Relacionado: Cómo calcular el rango medio en Excel

  • https://r-project.org
  • https://www.python.org/
  • https://www.stata.com/

Redactor del artículo

  • Luis Benites
    Director de Statologos.com

    Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

    Ver todas las entradas

¿Te hemos ayudado?

Ayudanos ahora tú, dejanos un comentario de agradecimiento, nos ayuda a motivarnos y si te es viable puedes hacer una donación:

La ayuda no cuesta nada

Por otro lado te rogamos que compartas nuestro sitio con tus amigos, compañeros de clase y colegas, la educación de calidad y gratuita debe ser difundida, recuerdalo:

Deja un comentario

Un residual es la diferencia entre un valor observado y un valor predicho en un modelo de regresión . Se…
statologos comunidad-2

Compartimos información EXCLUSIVA y GRATUITA solo para suscriptores (cursos privados, programas, consejos y mucho más)

You have Successfully Subscribed!