Contenido de este artículo
- 0
- 0
- 0
- 0
Una forma de cuantificar la relación entre dos variables es utilizar el coeficiente de correlación de Pearson , que es una medida de la asociación lineal entre dos variables .Toma un valor entre -1 y 1 donde:
- -1 indica una correlación lineal perfectamente negativa.
- 0 indica que no hay correlación lineal.
- 1 indica una correlación lineal perfectamente positiva.
Cuanto más lejos esté el coeficiente de correlación de cero, más fuerte será la relación entre las dos variables.
Pero en algunos casos queremos comprender la correlación entre más de un par de variables. En estos casos, podemos crear una matriz de correlación , que es una tabla cuadrada que muestra los coeficientes de correlación entre varias combinaciones de variables por pares.
Este tutorial explica cómo crear e interpretar una matriz de correlación en Matlab.
Cómo crear una matriz de correlación en Matlab
Utilice los siguientes pasos para crear una matriz de correlación en Matlab.
Paso 1: crea el conjunto de datos.
rng (0); A = randn (10,1); B = randn (10,1); C = randn (10,1); todo = [ABC];
Paso 2: Cree la matriz de correlación.
R = corrcoef (todos) R = 1,0000 0,4518 -0,5003 0,4518 1,0000 -0,8017 -0.5003 -0.8017 1.0000
Paso 3: Interprete la matriz de correlaciones.
Los coeficientes de correlación a lo largo de la diagonal de la tabla son todos iguales a 1 porque cada variable está perfectamente correlacionada consigo misma.
Todos los demás coeficientes de correlación indican la correlación entre diferentes combinaciones de variables por pares. Por ejemplo:
- El coeficiente de correlación entre ‘a’ y ‘b’ es 0.4518 .
- El coeficiente de correlación entre ‘a’ y ‘c’ es -0.5003 .
- El coeficiente de correlación entre ‘b’ y ‘c’ es -0,8017.
Paso 4: Encuentre los valores p de los coeficientes de correlación.
[R, P] = corrcoef (todos) R = 1,0000 0,4518 -0,5003 0,4518 1,0000 -0,8017 -0.5003 -0.8017 1.0000 P = 1,0000 0,1899 0,1408 0,1899 1,0000 0,0053 0,1408 0,0053 1,0000
La forma de interpretar los valores p es la siguiente:
- El valor p para el coeficiente de correlación entre ‘a’ y ‘b’ es 0,1899 .
- El valor p para el coeficiente de correlación entre ‘a’ y ‘c’ es 0,1408 .
- El valor p para el coeficiente de correlación entre ‘b’ y ‘c’ es 0.0053.
Si el valor p es menor que algún nivel de significancia (por ejemplo, 0.05), entonces podemos decir que la correlación entre las dos variables es estadísticamente significativa. En este caso, la correlación entre las variables ‘b’ y ‘c’ es la única correlación estadísticamente significativa.
Recursos adicionales
Documentación para la función corrcoef ()
Cómo leer una matriz de correlación
- https://r-project.org
- https://www.python.org/
- https://www.stata.com/
¿Te hemos ayudado?
Ayudanos ahora tú, dejanos un comentario de agradecimiento, nos ayuda a motivarnos y si te es viable puedes hacer una donación:La ayuda no cuesta nada
Por otro lado te rogamos que compartas nuestro sitio con tus amigos, compañeros de clase y colegas, la educación de calidad y gratuita debe ser difundida, recuerdalo: