Proporción de muestra

Puedes opinar sobre este contenido:
  • 0
  • 0
  • 0
  • 0

Actualizado el 12 de marzo de 2022, por Luis Benites.

La proporción muestral (p̂) describe la proporción de individuos en una muestra con una determinada característica o rasgo. Para encontrar la proporción de la muestra, divida el número de personas (o artículos) que tienen la característica de interés por el número total de personas (o artículos) en la muestra. Por ejemplo, supongamos que está realizando una encuesta a 100 personas preguntando si compran localmente o no. Si 35 personas dicen que compran localmente, entonces

p = 35/100 = 0,35.

p̂ puede tomar valores entre 0 y 1 (es decir, 0% a 100%).

Proporción muestral como variable aleatoria

La proporción muestral es una variable aleatoria porque varía aleatoriamente de una muestra a otra; si tuviera que encuestar a un conjunto diferente de 100 personas, podría obtener desde 0 respuestas positivas (es poco probable que las personas que viven en desiertos alimentarios compren localmente) hasta 100 (las personas en ciudades planificadas podrían no tener motivos para viajar para ir de compras). Cuando vemos la proporción de la muestra como una variable aleatoria, se denota con una P mayúscula: P̂.

Como esta estadística es una variable aleatoria, puede ser igual a la proporción de la población , o puede no serlo. Sin embargo, sus muestras se agruparán en torno a la verdadera proporción de la población; Si la verdadera proporción de personas que compran localmente es de 0,40, la proporción de la muestra se acercará a este número a medida que tome más y más muestras. Si tuviera el tiempo y el dinero para muestrear a todos, entonces p = p̂ = 0.40;. Entonces tiene sentido que la media de la proporción de la muestra sea igual a la proporción de la población.

Desviación estándar de la proporción de la muestra

Si toma muestras al azar muchas veces con un tamaño de muestra lo suficientemente grande, de modo que vea al menos cinco de cada resultado posible, la desviación estándar es igual a [1]:
proporción de la muestra

Si toma muchas muestras en las condiciones anteriores, el gráfico de la proporción de la muestra tendrá forma de campana. Más formalmente, decimos que la distribución muestral de la proporción muestral tiene una distribución aproximadamente normal .

Siguiente: Distribución muestral de la proporción muestral

Referencias

[1] Regla de proporciones muestrales. Recuperado el 4 de febrero de 2021 de: http://personal.psu.edu/drh20/016/fall2010/psu016confint.pdf

Redactor del artículo

  • Luis Benites
    Director de Statologos.com

    Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

    Ver todas las entradas

¿Te hemos ayudado?

Ayudanos ahora tú, dejanos un comentario de agradecimiento, nos ayuda a motivarnos y si te es viable puedes hacer una donación:

La ayuda no cuesta nada

Por otro lado te rogamos que compartas nuestro sitio con tus amigos, compañeros de clase y colegas, la educación de calidad y gratuita debe ser difundida, recuerdalo:

Deja un comentario

¿Qué es el Problema de Pruebas Múltiples? Si ejecuta una prueba de hipótesis, existe una pequeña posibilidad (generalmente alrededor del…
statologos comunidad-2

Compartimos información EXCLUSIVA y GRATUITA solo para suscriptores (cursos privados, programas, consejos y mucho más)

You have Successfully Subscribed!