Distribución Hipergeométrica: Ejemplos y Fórmula

Actualizado por ultima vez el 30 de abril de 2022, por Luis Benites.

  • Distribuciones binomiales .
  • Fórmula de distribución hipergeométrica

    Mira el video para ver un ejemplo:

    Ejemplo de fórmula de distribución hipergeométrica

    La definición (algo formal) de la distribución hipergeométrica, donde X es una variable aleatoria, es: Donde:
    fórmula de distribución hipergeométrica

    • K es el número de éxitos en la población
    • k es el número de éxitos observados
    • N es el tamaño de la población
    • n es el número de sorteos

    Podría simplemente conectar sus valores en la fórmula . Sin embargo, si las fórmulas no son lo tuyo, otra forma es simplemente pensar en el problema, usando tu conocimiento de las combinaciones.

    Distribución Hipergeométrica Ejemplo 1

    Una baraja de cartas contiene 20 cartas: 6 cartas rojas y 14 cartas negras. Se extraen 5 cartas al azar sin reemplazo . ¿Cuál es la probabilidad de sacar exactamente 4 tarjetas rojas?

    La probabilidad de elegir exactamente 4 tarjetas rojas es:
    P(4 tarjetas rojas) = ​​# muestras con 4 tarjetas rojas y 1 tarjeta negra / # de muestras posibles de 4 tarjetas

    Usando la fórmula de combinaciones, el problema se convierte en: En resumen, la fórmula anterior se puede escribir como: (6C4*14C1)/20C5 donde
    fórmula hipergeométrica

    • 6C4 significa que de 6 tarjetas rojas posibles, estamos eligiendo 4.
    • 14C1 significa que de 14 cartas negras posibles, estamos eligiendo 1.

    Solución = (6C4*14C1)/20C5 = 15*14/15504 = 0,0135

    La distribución binomial no se aplica aquí, porque las cartas no se reemplazan una vez que se extraen. En otras palabras, los juicios no son eventos independientes. Por ejemplo, para 1 tarjeta roja, la probabilidad es 6/20 en el primer sorteo. Si esa tarjeta es roja, la probabilidad de elegir otra tarjeta roja cae a 5/19.

    Distribución Hipergeométrica Ejemplo 2

    Un distrito electoral pequeño tiene 101 votantes mujeres y 95 votantes hombres. Se extrae una muestra aleatoria de 10 votantes. ¿Cuál es la probabilidad de que exactamente 7 de los votantes sean mujeres?

    101C7*95C3/(196C10)= (17199613200*138415)/18257282924056176 = 0,130
    Donde:

    • 101C7 es el número de formas de elegir 7 hembras de 101 y
    • 95C3 es el número de formas de elegir 3 votantes masculinos* de 95
    • 196C10 es el total de votantes (196) de los cuales estamos eligiendo 10

    *Eso es porque si 7/10 votantes son mujeres, entonces 3/10 votantes deben ser hombres.

    ¡ Visite nuestro canal de YouTube para ver cientos de videos de ayuda sobre estadísticas!

    Aplicación de la Distribución Hipergeométrica en la Vida Real: Ejemplos

    La distribución hipergeométrica describe el número de éxitos en una secuencia de n ensayos de una población finita sin reemplazo. A primera vista, puede parecer que se trata de una distribución puramente académica, pero en realidad existen muchas aplicaciones diferentes de la distribución hipergeométrica en la vida real.

    Aplicación de la Distribución Hipergeométrica en la Vida Real

    En electroquímica , la distribución hipergeométrica puede predecir el efecto del deterioro de la superficie sobre el comportamiento de los electrodos para cualquier proceso de electrodos con dos reacciones en competencia. Esto brinda información valiosa sobre la efectividad de las interfaces electrodo-electrolito y mejora la interpretación de las mediciones de las propiedades de la superficie [1].

    Si juegas al póquer , la distribución hipergeométrica puede indicarte la probabilidad de obtener 3 del mismo palo en una mano de 5 cartas (o cualquier número de otras combinaciones de cartas y manos).

    El juego de lotería PowerBall es un sorteo televisado de dos partes. En la primera etapa, se extraen al azar cinco bolas blancas de un tazón de 49 bolas. En la segunda etapa, se extrae al azar una bola roja (la PowerBall) de un tazón de 42 bolas. La probabilidad de éxito cambia de un sorteo a otro (las bolas no se reemplazan), por lo que las probabilidades del juego se pueden modelar con la distribución hipergeométrica [2].

    Referencias

    [1] Fahidy, T. (2012). Una aplicación de la teoría de la distribución hipergeométrica a los procesos competitivos en el deterioro de las superficies de los electrodos. En Comunicaciones electroquímicas, 282-284.
    [2] Anderson, J. y Schmidt, J. (2002). ¿Jugando Powerball? . Actas. Jornada Anual de Tributación y Acta de la Asamblea Anual de la Asociación Tributaria Nacional. págs. 377-382.

    Beyer, WH CRC Standard Mathematical Tables, 31ª ed. Boca Raton, FL: CRC Press, págs. 536 y 571, 2002.
    Klein, G. (2013). La caricatura Introducción a la estadística. Colina y Wamg.
    Lindström, D. (2010). Schaum’s Easy Outline of Statistics , segunda edición (Schaum’s Easy Outlines) 2ª edición. Educación McGraw-Hill
    Vogt, WP (2005). Diccionario de estadística y metodología: una guía no técnica para las ciencias sociales . SABIO.

    Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

    Deja un comentario

    La distribución sinusoidal (también llamada distribución sinusoidal de Gilbert ) es una distribución de probabilidad continua basada en una parte…
    statologos comunidad-2

    You have Successfully Subscribed!