Contenido de este artículo
- 0
- 0
- 0
- 0
Actualizado el 7 de mayo de 2021, por Luis Benites.
Un gráfico QQ , abreviatura de gráfico «cuantiles-cuantiles», se utiliza a menudo para evaluar si un conjunto de datos proviene o no de alguna distribución teórica. En la mayoría de los casos, este tipo de gráfico se utiliza para determinar si un conjunto de datos sigue una distribución normal.
Este tutorial explica cómo crear una gráfica QQ para un conjunto de datos en Python.
Ejemplo: QQ Plot en Python
Supongamos que tenemos el siguiente conjunto de datos de 100 valores:
importar numpy como np #create un conjunto de datos con 100 valores que sigan una distribución normal np.random.seed (0) datos = np.random.normal (0,1, 1000) #ver datos de los primeros 10 valores [: 10] matriz ([1.76405235, 0.40015721, 0.97873798, 2.2408932, 1.86755799, -0,97727788, 0,95008842, -0,15135721, -0,10321885, 0,4105985])
Para crear una gráfica QQ para este conjunto de datos, podemos usar la función qqplot () de la biblioteca statsmodels:
importar statsmodels.api como sm importar matplotlib.pyplot como plt #create la gráfica QQ con una línea de 45 grados agregada a la gráfica fig = sm.qqplot (datos, línea = '45 ') plt.show ()
En una gráfica QQ, el eje x muestra los cuantiles teóricos . Esto significa que no muestra sus datos reales, sino que representa dónde estarían sus datos si se distribuyeran normalmente.
El eje y muestra sus datos reales . Esto significa que si los valores de los datos caen a lo largo de una línea aproximadamente recta en un ángulo de 45 grados, entonces los datos se distribuyen normalmente.
Podemos ver en nuestro gráfico QQ anterior que los valores de los datos tienden a seguir de cerca los 45 grados, lo que significa que es probable que los datos se distribuyan normalmente. Esto no debería sorprendernos, ya que generamos los 100 valores de datos usando la función numpy.random.normal () .
Considere, en cambio, si generamos un conjunto de datos de 100 valores distribuidos uniformemente y creamos una gráfica QQ para ese conjunto de datos:
# crear un conjunto de datos de 100 valores distribuidos uniformemente datos = np.random.uniform (0,1, 1000) #generar gráfica QQ para el conjunto de datos fig = sm.qqplot (data, line = '45 ') plt.show ()
Los valores de los datos claramente no siguen la línea roja de 45 grados, lo que es una indicación de que no siguen una distribución normal.
Notas sobre los gráficos QQ
Tenga en cuenta las siguientes notas sobre los gráficos QQ:
- Aunque un gráfico QQ no es una prueba estadística formal, ofrece una manera fácil de verificar visualmente si un conjunto de datos se distribuye normalmente o no.
- Tenga cuidado de no confundir los gráficos QQ con los gráficos PP , que se usan con menos frecuencia y no son tan útiles para analizar valores de datos que caen en las colas extremas de la distribución.
Puede encontrar más tutoriales de Python aquí .
- https://r-project.org
- https://www.python.org/
- https://www.stata.com/
¿Te hemos ayudado?
Ayudanos ahora tú, dejanos un comentario de agradecimiento, nos ayuda a motivarnos y si te es viable puedes hacer una donación:La ayuda no cuesta nada
Por otro lado te rogamos que compartas nuestro sitio con tus amigos, compañeros de clase y colegas, la educación de calidad y gratuita debe ser difundida, recuerdalo: