Proporciones binomiales: diferencia entre dos grupos

Actualizado por ultima vez el 22 de agosto de 2021, por Luis Benites.

Anterior : supuestos estadísticos

Analizar la diferencia entre dos grupos usando proporciones binomiales

Hasta ahora, en Introducción a la estadística , hemos cubierto muchos fundamentos esenciales. Pongámoslos en acción mientras observamos otro tipo común de análisis que involucra proporciones binomiales. Estamos encuestando a la población de Flowing Wells, pero los compararemos con la población de un pueblo vecino, Artesian Wells. El motivo de nuestras encuestas es evaluar cómo se sienten los residentes acerca de una iniciativa del gobierno estatal recientemente propuesta.

El gobierno estatal está considerando aumentar los impuestos estatales para financiar algunos programas gubernamentales nuevos. Vamos a encuestar a los residentes de Flowing Wells como lo hemos estado haciendo, pero también vamos a encuestar a los residentes del pueblo cercano de Artesian Wells. Históricamente, se sabe que la ciudad de Flowing Wells se inclina hacia el socialismo y probablemente esté a favor de los nuevos impuestos y programas, pero se cree que la ciudad de Artesian Wells tiene una tendencia libertaria y probablemente no. La encuesta se realizará en cada uno de los dos pueblos para ver si las proporciones de residentes que están a favor de los nuevos impuestos y programas son diferentes en los dos pueblos.

La hipótesis nula correspondiente es que no son diferentes: no hay diferencia entre las proporciones de población de las comunidades de Flowing Wells y Artesian Wells . Es decir, la diferencia entre las proporciones de población de Flowing Wells y Artesian Wells es igual a cero.

La estadística muestral relevante es la proporción muestral de Flowing Wells menos la proporción muestral de Artesian Wells. (Usar la proporción de muestra de los pozos artesianos menos la proporción de muestra de los pozos que fluyen nos dará fundamentalmente los mismos resultados).

Desafortunadamente, la organización sin fines de lucro que realiza la encuesta solo tiene recursos para encuestar a 100 residentes al azar en cada ciudad. Primero, obtengamos una “vista de pájaro” de la situación. La hipótesis nula es que no hay diferencia entre las proporciones de población de las comunidades de Flowing Wells y Artesian Wells, así que veamos los resultados de la simulación que asumen que eso es cierto.

Proporciones Binomiales: Resultados de la Simulación

Supondremos que tanto Flowing Wells como Artesian Wells tienen una opinión general de la población de la comunidad del 50 % (0,50) de acuerdo, de modo que la diferencia en las proporciones de la población es igual a cero. Si se encuesta a 100 personas al azar en cada una de las dos comunidades, ¿cuál es la probabilidad de que surjan por casualidad varias diferencias en las proporciones de la muestra, debido a la aleatoriedad inherente al muestreo? La simulación toma dos muestras aleatorias de tamaño 100 de poblaciones que tienen un 50% a favor y resta una de las proporciones de la muestra de la otra. Hace esto una y otra y otra vez.
La figura 10.1 ilustra los resultados de la simulación, que es la distribución muestral de lo que se espera cuando la hipótesis nula es verdadera.

La fórmula del error estándar para la diferencia entre dos proporciones de población es Observe que los términos dentro de la raíz cuadrada siguen la misma estructura de «varianza dividida por el tamaño de la muestra» que vimos con el error estándar para una sola proporción. Ahora hay un término para cada una de las dos poblaciones. Ambas muestras tienen un tamaño de 100 y suponemos que ambas tienen una población p igual a 0,5, lo que hace que su diferencia sea igual a cero. Usando la fórmula del intervalo de confianza del 95% obtenemos Eso concuerda con la Figura 10.1; la distribución de muestreo se aproxima muy bien por la distribución z que está incorporada en la fórmula.
proporciones binomiales

Para un análisis de ejemplo, supongamos que las proporciones binomiales de la muestra para la encuesta son: Pozos de flujo = .52 y Pozos artesianos = .44. La diferencia es .08, que está dentro del intervalo del 95%. Conclusión: No rechace la Hipótesis Nula. (Nunca aceptamos la hipótesis nula, simplemente no la rechazamos).

Realización de la encuesta para proporciones binomiales

Ahora que hemos visto la vista de pájaro, volvamos a realizar las encuestas. La primera encuesta se realiza en marzo. Vamos a analizar los datos de la encuesta utilizando el otro tipo de fórmula principal que hemos estado utilizando. Convertiremos una diferencia de proporción de muestra a la escala de error estándar. A continuación se muestra la fórmula para el error estándar de la diferencia entre dos proporciones de muestra.
̂ Supongamos que los datos de la encuesta arrojan una proporción de muestra para pozos fluidos de .52 y para pozos artesianos de .44. ¿Están estas dos proporciones de muestra lo suficientemente separadas como para que podamos decir que la diferencia es estadísticamente significativa? Primero, calcularemos el error estándar de la diferencia de proporción muestral. diferencia de proporciones de muestra

Suponga que la encuesta se realiza nuevamente un mes después, en abril, y las dos proporciones binomiales de la muestra están más alejadas: .52 y .34.
En primer lugar, dado que .34 está más cerca de cero que la mayoría de las proporciones que hemos encontrado hasta ahora, verifiquemos una regla general de suposición estadística
: n ∗ p ≥ 10 y n ∗ (1 − p) ≥ 10
Con un tamaño de muestra de 100 y proporción de .34 obtenemos
100 ∗ .34 = 34 ≥ 10 y 100 ∗ (1 − .34) = 66 ≥ 10
Esta suposición se cumple cómodamente, así que calcularemos los errores estándar de la diferencia entre .52 y .34 y luego verifíquelo con la distribución z. Mirando la figura 10.3 vemos que 2.614 errores estándar está fuera del intervalo del 95%.
calcular el error estándar para proporciones binomiales

A continuación, digamos que para la encuesta del mes siguiente, en mayo, se comprometen recursos adicionales para que se puedan recolectar muestras más grandes. Los valores estadísticos de la muestra son los mismos que hace dos meses, en marzo, proporciones de muestra de 0,52 y 0,44, pero ahora los tamaños de muestra son 1000. Al observar la figura 10.4, vemos que 3,592 errores estándar está fuera del intervalo del 95 %.

Siguiente : El resto del iceberg (frecuentista)

Referencias

JE Kotteman. Análisis Estadístico Ilustrado – Fundamentos . Publicado vía Copyleft . Eres libre de copiar y distribuir el contenido de este artículo.

Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

Deja un comentario

1. Media en Excel 2016-2013 Mire el video o lea los pasos a continuación: Cómo encontrar una media en Excel…
statologos comunidad-2

You have Successfully Subscribed!