MANCOVA: Análisis Multivariante de Covarianza

Actualizado por ultima vez el 21 de octubre de 2021, por Luis Benites.

<< Artículo anterior: ¿Qué es ANCOVA ?

¿Qué es MANCOVA?

MANCOVA (Análisis Multivariante de Covarianza) es la contraparte multivariante de ANCOVA . MANCOVA te dice si hay diferencias de medias estadísticamente significativas entre los grupos. En otras palabras, le dice si las diferencias de grupo probablemente ocurrieron por casualidad o si hay una tendencia repetible .

Mira el video para una introducción:

¿Qué es MANCOVA?

mancova

Las covariables se controlan en MANCOVA. Imagen: Makingstats|Wikimedia Commons

MANCOVA elimina los efectos de una o más covariables de su modelo ; Esto le permite ver el verdadero efecto de sus variables independientes en sus variables dependientes sin interferencias no deseadas. Esta prueba sobrecargada tiene un costo: los tamaños de muestra MANCOVA requeridos son mucho más grandes que otras pruebas. Es posible que esto no valga la pena el tiempo y los gastos adicionales; la mayoría de las veces, un MANOVA (es decir, la misma prueba sin mirar las covariables) puede ser más poderoso.

Tipos

  • Un MANCOVA unidireccional necesita al menos cuatro variables: una variable independiente con dos o más grupos (niveles o factores) más dos o más variables dependientes y una o más covariables.
  • Un MANCOVA de dos vías incluye dos variables independientes.

Covariables/Covarianza definida

La covarianza es una medida de cuánto varían juntas dos variables aleatorias . Es similar a la varianza, pero donde la varianza te dice cómo varía una sola variable, la covarianza te dice cómo varían dos variables juntas. Una covariable puede ser una de estas dos variables. Es cualquier variable que afecta la forma en que sus variables independientes actúan sobre sus variables dependientes. Por ejemplo, las variables de confusión son covariables.

suposiciones

Los supuestos para MANCOVA son los mismos que los supuestos para MANOVA, con la adición de un par más para la covarianza. Como era de esperar con una prueba compleja (en comparación con una prueba mucho más simple como una prueba z ), estas suposiciones son largas y algo complejas. Esta es una de las razones por las que estas pruebas casi siempre se realizan con software, ya que la mayoría del software estadístico probará estos supuestos antes de ejecutar la prueba.

Las covariables que elija deben estar correlacionadas con las variables dependientes. Esto se puede probar antes de su inclusión en MANCOVA con análisis de correlación. Las mejores variables dependientes, por otro lado, no están correlacionadas entre sí.

Diferencias entre MANCOVA y otras pruebas similares

MANCOVA, MANOVA, ANOVA, ANCOVA: todo puede ser un poco confuso para recordar cuál es cuál. Sin embargo, todas las pruebas se pueden considerar como variantes de MANCOVA, si recuerda que la » M » en MANCOVA significa M últiple y la » C » significa C ovariable. Las pruebas pueden ser pensadas como un MACOVA…

  • ANOVA : … sin múltiples variables dependientes y covariables (de ahí la falta de M y C).
  • ANCOVA : …sin múltiples variables dependientes (de ahí la falta de M).
  • MANOVA : …sin covariables (de ahí la falta de C).

Artículos relacionados:

Referencias :
Tabachnick, BG y Fidell, LS (1983). Uso de estadísticas multivariadas. Nueva York: Harper & Row.

Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

Deja un comentario

Comparación de Medios Técnicas La comparación de las pruebas de medios le ayuda a determinar si sus grupos tienen medios…
statologos comunidad-2

You have Successfully Subscribed!