Parametrización: ¿Qué significa parametrizar?

Puedes opinar sobre este contenido:
  • 0
  • 0
  • 0
  • 0

Actualizado el 29 de octubre de 2021, por Luis Benites.

Este artículo trata sobre la definición de distribuciones de probabilidad usando parámetros . Si está tratando de averiguar sobre parámetros de población (cubiertos en estadísticas elementales ), consulte: ¿Qué es un parámetro en estadística?

¿Qué es la Parametrización?

parametrización

La familia de distribución gamma , que muestra algunas de las posibles opciones de parámetros.

En pocas palabras, la parametrización (o parametrización) es donde cambia ciertos aspectos de una distribución de probabilidad ajustando sus parámetros.

Se pueden usar muchos parámetros diferentes para definir una distribución de probabilidad. Por ejemplo:

Más específicamente, cuando parametriza, especifica una curva o forma con valores en un rango específico . Las familias paramétricas tienen muchos parámetros posibles; lo que elija es generalmente una cuestión de conveniencia, simplicidad y utilidad (Breiman, 1973).

Una definición más formal

Se puede utilizar una función para representar la parametrización. De hecho, la función que define un modelo estadístico a veces se denomina parametrización del modelo. La función se toma de un conjunto θ con valores en P tal que θ → P θ (Commenges, 2004). La notación es la siguiente:

  • P = familia de probabilidades,
  • Π = (P θ ; θ ∈ Θ)—Una parametrización para una determinada familia de probabilidades. Las parametrizaciones de la misma familia de probabilidades se pueden denotar con Π 1 , Π 2 … Π n .

Sin embargo, una función no es suficiente por sí sola para definir un modelo. Un modelo identificable es uno con parámetros conocidos y un conjunto de variables aleatorias .

Parametrización frecuentista frente a bayesiana

En las estadísticas frecuentistas , la parametrización no cambia las probabilidades en el modelo. Simplemente cambia la ubicación en la recta numérica, la forma general o la extensión. Sin embargo, en la teoría bayesiana, puede dar lugar a nuevos antecedentes y nuevos modelos (Gelman, 2004).

Referencias

Breiman, L. (1973). Estadística: con miras a las aplicaciones. Houghton Mifflin.
Cominges, D. (2009). Modelos estadísticos: Verosimilitud convencional, penalizada y jerárquica. Encuestas Estadísticas. vol. 3 (2009) 1–17.
Gelman, A. (2004). Parametrización y Modelado Bayesiano . Revista de la Asociación Estadounidense de Estadística. Volumen 99, 2004 – Número 466.

`

Redactor del artículo

  • Luis Benites
    Director de Statologos.com

    Tengo una Maestría en Ciencias en Estadística Aplicada y he trabajado en algoritmos de aprendizaje automático para empresas profesionales tanto en el sector de la salud como en el comercio minorista.

    Ver todas las entradas

¿Te hemos ayudado?

Ayudanos ahora tú, dejanos un comentario de agradecimiento, nos ayuda a motivarnos y si te es viable puedes hacer una donación:

La ayuda no cuesta nada

Por otro lado te rogamos que compartas nuestro sitio con tus amigos, compañeros de clase y colegas, la educación de calidad y gratuita debe ser difundida, recuerdalo:

Deja un comentario

Es posible que desee leer estos artículos primero: ¿Qué es el Muestreo Secuencial? ¿Qué es una prueba de razón de…
statologos comunidad-2

Compartimos información EXCLUSIVA y GRATUITA solo para suscriptores (cursos privados, programas, consejos y mucho más)

You have Successfully Subscribed!